innovation for life

SUSTAINABLE TECHNOLOGIES FOR INDUSTRIAL PROCESSES IN A NUTSHELL MISARIC

TOWARDS CO₂ NEUTRAL INDUSTRY CONTRIBUTION OF STIP TO THE PMC-CLUSTERS OF THE ROADMAP

TIME TOPE TOPE TOPE Radically New Industrial Processes	Synthetic Fuels & Chemicals	Biobased Fuels & Chemicals	Clean Hydrogen Production	Energy Infrastructure for Industry	Sustainable Industrial Heat System	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Industrial Transformation (multi-unit)						

innovation for life

PRODUCTION OF GREEN HYDROGEN

- > Internationally Orientated. Top 3 player in Europe on Electrolysis
- Initiated strong industrial ecosystems across supply chain (North Sea Energy, Voltachem)
- Building a strong network of national high tech companies (Electrolyzer producers platform NL)
- R&D one of the technology leaders in the field of PEM and SOE
- > Facilities: state of the art across value chain (Faraday lab, Hydrohub, Fieldlab, Switch, PoShydon, Holst)
- > IP portfolio in development
- > Potential to build strong collaboration between Netherlands and Germany for the High-Tech industry

THE DUTCH ELECTROLYZER STRATEGY

STRATEGIES TO POSITION THE NETHERLANDS IN THE NEXT DECADE

4 strategies

Support Dutch companies to Product - X €/kW become active in the electrolyzer innovation Cost reduction by production supply chain (Dutch technology volume and standardisation inside) scale up to GN scale Support industry clusters with **Demonstration** transition to CO₂ free production processes based on green hydrogen Developing High-volume & high Process precision production equipment (and innovation assembly in the NL) Developing next generation System Electrolyzer technology (become an innovation OEMer for specific application i.e. offshore)

> SYNTHETIC FUELS

CO₂ UTILIZATION TO METHANOL WITH SEWGS

- > Methanol essential energy vector, chemical feedstock in circular carbon economy
-) CO₂ separation and methanol synthesis demonstrated in industrially relevant environment (TRL6), for 1500 h

THE E2C PROJECT CO₂ UTILIZATION TO PRODUCE DIMETHYL ETHER

www.voltachem.com/e2c

) 3 shell-and-tube reactors of 7.5 m and 150 L each

) TRL6 demonstration

innovation for life

SUSTAINABLE INDUSTRIAL TEASSIENS

the set and

SUSTAINABLE INDUSTRIAL HEAT SYSTEMS HEAT IS HOT!

_

-

MISSION

Develop knowledge and technology to support industry in the transition to a sustainable, carbon neutral, heat system.

PROGRAM LINES

- Eliminate or reduce heat demand
- > Sustainable heat production
- > Recover and re-use of heat
- > System analyses and integration

Energy efficient separation

Heat pumps

ENERGY EFFICIENT SEPARATION

025

DRYING AND DEWATERING SECOND TITLE OF THE SLIDE

SOLIDARITY Developing

ELECTRO SEPARATION RECOVERY OF PRODUCTS FROM WASTE STREAMS

- MCDI = Membrane capacitive deionization: Remove ions (salts, (organic) acids, bases) from process streams, thereby enabling the reuse of these streams.
 - > Use of biomass (biorefining) based process streams; e.g. improved fermentation processes
 - Concentration of e.g. CO₂ or NO₃ in water, combined with electrochemical conversion

> Electrochemically-driven production of chemicals from waste to

i) eliminate waste disposal and ii) reduce water consumption) Electrode ionisation for HCl and NaOH production) Phosphate recovery as valuable fertilizer product $\begin{array}{c}
& & \\ & &$

HEAT PUMPS

COMPRESSION HEAT PUMP TECHNOLOGY DEVELOPMENT TNO ROADMAP

Temperature heat delivery (°C)

THANK YOU FOR YOUR TIME AND ATTENTION

